Name			Date
11.2 Practice B For use with pages 718–726			
Simplify the expression.			
1. $\sqrt{200}$	2.	$\sqrt{45}$	3. $\sqrt{112}$
4. $\sqrt{400}$	<u>)</u> <i>d</i> 5.	$\sqrt{9y^2}$	6. $\sqrt{25n^3}$
7. $\sqrt{3}$ •	√ <u>21</u> 8.	$\sqrt{20} \cdot \sqrt{15}$	9. $\sqrt{10x} \cdot \sqrt{2x}$
10. $\sqrt{\frac{16}{81}}$	11.	$\sqrt{\frac{5}{49}}$	12. $\sqrt{\frac{x^2}{144}}$
Simplify the expression by rationalizing the denominator.			
13. $\frac{4}{\sqrt{5}}$	14.	$\sqrt{\frac{3}{50}}$	15. $\sqrt{\frac{9}{75}}$
16. $\frac{2}{\sqrt{p}}$	17.	$\frac{1}{\sqrt{3y}}$	18. $\frac{9}{\sqrt{2x}}$
Simplify the expression.			
19. 10 $\sqrt{7}$	$\overline{7} + 3\sqrt{7}$ 20.	$4\sqrt{5}-7\sqrt{5}$	21. $\sqrt{7}(4-\sqrt{7})$
22. $\sqrt{5}(8)$	$x\sqrt{10} + 1$) 23.	$(2\sqrt{3}+5)^2$	24. $(6 + \sqrt{3})(6 - \sqrt{3})$
25. Wate tube.	. Water Flow You can measure the speed of water by using an L-shaped tube. The speed V of the water (in miles per hour) is given by the function $V = \sqrt{\frac{5}{h}}$ where h is the height of the column of water above		
Tunct	function $\nu = \sqrt{\frac{2}{2}n}$ where <i>h</i> is the height of the column of water above		

LESSON 11.2

the surface (in inches).

- **a.** If you use the tube in a river and find that *h* is 6 inches, what is the speed of the water? Round your answer to the nearest hundredth.
- **b.** If you use the tube in a river and find that *h* is 8.5 inches, what is the speed of the water? Round your answer to the nearest hundredth.
- **26.** Walking Speed The maximum walking speed *S* (in feet per second) of an animal is given by the function $S = \sqrt{gL}$ where *g* is 32 feet per second squared and *L* is the length of the animal's leg (in feet).
 - **a.** How fast can an animal whose legs are 9 inches long walk? Round your answer to the nearest hundredth.
 - **b.** How fast can an animal whose legs are 3 feet long walk? Round your answer to the nearest hundredth.

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.