Name: $\qquad$ Date: $\qquad$
Notes
Algebra Section 2.6
Pages 103-108
Goal: "You will divide real numbers"

## Vocabulary:

Multiplicative Inverse: $\qquad$

## Property:

Inverse Property of Multiplication: The $\qquad$ of a $\qquad$ number and its
$\qquad$
$\qquad$ is $\qquad$ _.

Example:
The multiplicative inverse of $-\frac{1}{5}$ is -5 because $-\frac{1}{5} \cdot(-5)=1$
The multiplicative inverse of $-\frac{6}{7}$ is $-\frac{7}{6}$ because $-\frac{6}{7} \cdot\left(-\frac{7}{6}\right)=1$
Try These:
What is the multiplicative inverse of 7 ? $\qquad$
What is the multiplicative inverse of -8 ? $\qquad$
What is the multiplicative invers of $-\frac{2}{3}$ ? $\qquad$

## Dividing Positive and Negative Numbers:

Negative $\div$ Negative $=$ Positive
Negative $\div$ Positive $=$ Negative
Positive $\div$ Negative $=$ Negative
Examples:
$-20 \div\left(-\frac{5}{3}\right)=$
$-\frac{3}{8} \div \frac{3}{10}=$
$16 \div(-4)=$

Try These:

$$
\begin{array}{lll}
-35 \div 7= & 12 \div(-3)= & -18 \div(-6)= \\
-\frac{5}{2} \div(-7)= & 1.2 \div(-3)= & \frac{1}{2} \div(-4)= \\
7 \div(-2)= & -4 \div(-8)= & -\frac{3}{4} \div\left(-\frac{3}{8}\right)=
\end{array}
$$

## Finding the Mean:

Example: The table gives the daily minimum temperatures (in degrees Fahrenheit) in Barrow, Alaska, for the first 5 days of February 2004. Find the mean daily minimum temperature.

| Day in February | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Minimum Temperature $\left(\mathrm{F}^{\circ}\right)$ | -21 | -29 | -39 | -39 | -22 |

Mean: $\frac{-21+(-29)+(-39)+(-39)+(-22)}{5}=\frac{-150}{5}=-30^{\circ} \mathrm{F}$
Try This:
Find the mean maximum temperature (in degrees Fahrenheit) in Barrow, Alaska, for the first 5 days of February 2004.

| Day in February | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Maximum Temperature $\left(\mathrm{F}^{\circ}\right)$ | -3 | -20 | -21 | -22 | -18 |

## Simplifying an Expression (Division):

Example: $\frac{36 x-24}{6}=\frac{1}{6}(36 x-24)=6 x-4$
*Note: Each term in the numerator is divided by the denominator.


Try These:
$\frac{20 x+15}{5}$

$$
\frac{2 x-8}{-4}
$$

$$
\frac{-6 y+18}{3}
$$

