Name:

Notes

Algebra Section 4.5

Pages 244-250

Date:_____

Goal: "You will graph linear equations using slope-intercept form"

Slope-Intercept Form:

$$y = mx + b$$

m is the slope. It is the coefficient of xb is the y-intercept. It is always being added or subtracted.

Identify slope and y-intercept.

1)
$$y = 3x + 4$$

Slope: 3

y-intercept: 4

3)
$$y = 5x - 3$$

Slope: 5

y-intercept: -3

5)
$$v = -6x + 2$$

Slope: -6

y-intercept: 2

7)
$$\frac{2}{5}x = y$$

Slope: $\frac{2}{5}$

y-intercept: 0

9)
$$4 - x = y$$

Slope: -1

y-intercept: 4

2)
$$y = 3x + 2$$

Slope: 3

y-intercept: 2

4)
$$y = \frac{1}{3}x - 4$$

Slope: $\frac{1}{3}$

y-intercept: -4

6)
$$x + 3 = y$$

Slope: 1

y-intercept: 3

8)
$$y = x - 8$$

Slope: 1

y-intercept: -8

10)
$$4 - \frac{5}{8}x = y$$

Slope: $-\frac{5}{8}$

y-intercept: 4

To Graph a Line in Slope-Intercept Form:

1) Identify \underline{m} and \underline{b} . Be sure slope is written as a <u>fraction</u> so you can identify the <u>rise</u> and <u>run</u>. Notice if the <u>slope</u> is positive or negative.

2) Plot the <u>y-intercept.</u>

3) Always rise first. Run to the <u>right</u> if the slope is <u>positive</u>. Run to the <u>left</u> if the slope is <u>negative</u>.

4) Plot <u>several</u> points and connect with a <u>ruler</u>.

Graph using slope – intercept form:

Example:

Step 1: Identify the *m* and *b*. $m = \frac{1}{2} b = 1$

Step 3: Plot the *y*-intercept and rise.

Step 4: Run right if + and left if -.

Step 5: Plot several points and connect.

Try These:

1)
$$y = 2x - 4$$

$$2x - 4 = y$$

2)
$$y = -\frac{2}{5}x + 1$$

4)
$$2 - \frac{1}{3}x = y$$

Special Slopes:

Parallel Lines: They have the same <u>slope</u>. If two lines are <u>parallel</u> they are <u>increasing</u> or <u>decreasing</u> at the same <u>rate</u>, and therefore will never <u>intercect</u>, making them <u>parallel</u> <u>lines</u>.

To determine if two lines are parallel: Find the slope of each line.

Line A passes through the points (-1, -1) and (2, 0)

Line B passes through the points (0, -3) and (5, -1)

Line C passes through the points (-2, -5) and (4, -3)

Find the slope of each line by graphing.

Which two lines, if any, are parallel?

Line A and Line C are parallel because they have the same slope $\frac{1}{3}$

Decide if the given lines are parallel. State why or why not.

1)
$$y = 3x + 7$$

 $y = \frac{1}{3}x + 7$

No. The slopes are different 3 and
$$\frac{1}{3}$$

2)
$$y = \frac{1}{2}x + 4$$

 $4 + \frac{1}{2}x = y$

Yes. They both have slopes of $\frac{1}{2}$