


WRITING EQUATIONS OF PARALLEL AND PERPENDICULAR LINES Worksheet 311

Write the slope-intercept form for an equation of the line that passes through the given point and is parallel to the graph of each equation.

$$y = \frac{4}{3}x + 7$$

4.
$$(-2, 2)$$
, $y = 4x - 2$

$$y = 4x + 10$$

5. (6, 4),
$$y = \frac{1}{3}x + 1$$

$$y = \frac{1}{3}x + 2$$

6.
$$(4, -2)$$
, $y = -2x + 3$

$$y = -2x + 6$$

7.
$$(-2, 4), y = -3x + 10$$

$$y = -3x - 2$$

8.
$$(-1, 6)$$
, $3x + y = 12$

$$y = -3x + 3$$

9.
$$(4, -6), x + 2y = 5$$

$$y = -\frac{1}{2}x - 4$$

10. Find an equation of the line that has a y-intercept of 2 that is parallel to the graph of the line
$$4x + 2y = 8$$

$$y = -2x + 2$$

11. Find an equation of the line that has a y-intercept of -1 that is parallel to the graph of the line x - 3y = 6

$$y = \frac{1}{3}x - 1$$

12. Find the equation of the line that has a y-intercept of -4 that is parallel to the graph of the line y = 6

$$y = -4$$

WRITING EQUATIONS OF PARALLEL AND PERPENDICULAR LINES Worksheet 312

Write the slope-intercept form for an equation of the line that passes through the given point and is perpendicular to the graph of each equation.

1. (4, 2),
$$y = \frac{1}{2}x + 1$$

2.
$$(2, -3), y = -\frac{2}{3}x + 4$$

3.
$$(6, 4), y = 7x + 1$$

$$y = -2x + 10$$

$$y = \frac{3}{2}x - 6$$

$$y = -\frac{1}{7}x + \frac{34}{7}$$
 or

$$y = -\frac{1}{7}x + 4\frac{6}{7}$$

4.
$$(-8, -7)$$
, $y = -x - 8$

5.
$$(6, -2)$$
, $y = -3x - 6$

6.
$$(-5, -1), y = \frac{5}{2}x - 3$$

$$y = x + 1$$

$$y = \frac{1}{3}x - 4$$

$$y = -\frac{2}{5}x - 3$$

7.
$$(-9, 5)$$
, $y = -3x - 1$

8.
$$(-1, 3), 2x + 4y = 12$$

9.
$$(6, -6)$$
, $3x - y = 6$

$$y = \frac{1}{3}x + 8$$

$$y = 2x + 5$$

$$y = -\frac{1}{3}x - 4$$

10. Find the equation of the line that has a *y*-intercept of -2 and is perpendicular to the graph of the line x - 2y = 5.

$$y = -2x - 2$$

11. Find the equation of the line that has a *y*-intercept of 5 and is perpendicular to the graph of the line 4x + 3y = 8.

$$y = \frac{3}{4}x + 5$$