Match the linear system with its graph. Then use the graph to tell whether the linear system has one solution, no solution, or infinitely many solutions.

1.
$$6x + 4y = -5$$

$$6x + 4y = -5$$
$$3x + 2y = -\frac{5}{2}$$

2.
$$3x + 4y = 12$$
 $-4x + 3y = -9$

3.
$$y = \frac{3}{5}x + 5$$

 $-3x + 5y = -10$

C.

Graph the linear system. Then use the graph to tell whether the linear system has one solution, no solution, or infinitely many solutions.

4.
$$4y = 3x + 20$$

$$4y + 12 = 5x$$

7. 3x + 4y = -24

5.
$$3x + 2y = 8$$

$$-2x + 3y = 6$$

9.
$$-5x + 2y = 3$$

6. 3y - 4x = 6

 $y = \frac{4}{3}x + 2$

$$4y - 10x = 8$$

$$-2x + 3y = 1$$

8. 2x + 3y = -1

 $\frac{1}{3}x$

LESSON 7.5

Solve the linear system by using substitution or elimination.

10.
$$-x + 2y = -x - 3x + 4y = 4$$

11.
$$4x + 3y = 2$$

 $2x + \frac{3}{2}y = 1$

10.
$$-x + 2y = -4$$
 11. $4x + 3y = 2$ **12.** $x + 8y = 16$ $-3x + 4y = 4$ $2x + \frac{3}{2}y = 1$ $-3x + 8y = -8$

13.
$$-2x + 5y = -10$$
 14. $-2x + 3y = -\frac{1}{2}$ **15.** $2y - 10x = -8$ $5y - 2x = 5$ $3x + 2y = 4$ $2y - x = 4$

14.
$$-2x + 3y = -4$$

15.
$$2y - 10x = -8$$
 $2y - x = 4$

Without solving the linear system, tell whether the linear system has one solution, no solution, or infinitely many solutions.

16.
$$4y = 12x - 1$$

 $-12x + 3y = -1$

$$4y = 12x - 1$$
 17. $x + 4y = 3$ $\frac{1}{2}x + 2y = 4$

18.
$$-2x + 3y = 4$$

 $3x - 2y = 5$

19.
$$5y - 4x = 3$$

 $10y = 8x + 6$

20.
$$y - \frac{1}{4}x = -2$$

20.
$$y - \frac{1}{4}x = -2$$
 21. $3y + 5x = 1$ $-5x - 3y = 1$

22.
$$2y - x = 3$$

$$2x + y = 6$$

23.
$$-3x + 4y = -4$$

$$4x + 3y = 2$$

22.
$$2y - x = 3$$
 23. $-3x + 4y = -4$ **24.** $4y = -5x + 3$

$$2y + \frac{5}{2}x = \frac{3}{2}$$

25. Restaurant Sales The table below shows the number of each of the specials that has been sold on a Friday night and a Saturday night.

Day	Number of vegetarian specials	Number of chicken specials	Total sales (dollars)
Friday	28	44	964.40
Saturday	21	33	723.30

- **a.** Let x represent the cost (in dollars) of the vegetarian special and let y represent the cost (in dollars) of the chicken special. Write a linear system that models the situation.
- **b.** Solve the linear system.
- **c.** Can you determine how much each kind of special costs? Why or why not?
- **26.** Retail Prices Two employees at a store are given the task of putting price tags on items. One person starts pricing items at a rate of 10 items per minute. The second person starts 10 minutes after the first person and prices items at a rate of 8 items per minute.
 - **a.** Let y be the number of items priced x minutes after the first person starts pricing. Write a linear system that models the situation.
 - **b.** Solve the linear system.
 - **c.** Does the solution of the linear system make sense in the context of the problem? Explain.