# **Chapter 9: Polynomials and Factoring Study Guide**

#### 9.1: Add and subtract polynomials:

- Be able to identify an expression as a polynomial or not. If it is, be able to classify it by the number of terms, find the degree and write it so it is in descending order.

| Expression                                                      | Pol<br>yn<br>om<br>ial<br>? | Туре | Degree | Descending Order |
|-----------------------------------------------------------------|-----------------------------|------|--------|------------------|
| $-\frac{1}{2}$                                                  |                             |      |        |                  |
| $x^3y^5z$                                                       |                             |      |        |                  |
| $3x + \frac{1}{x}$                                              |                             |      |        |                  |
| $7bc^3 + 4b^4c$                                                 |                             |      |        |                  |
| $\frac{5ab^3c^5 - 4a^2bc^2 + 3a^3b^3c}{5z + 2z^3 - z^2 + 3z^4}$ |                             |      |        |                  |
|                                                                 |                             | ·    |        |                  |
| $-8rs^2 + 3r^2s - 4r^2s^2 + 9r - 3s$                            |                             |      |        |                  |

- Be able to add and subtract polynomials:

Ex: 
$$(9x+6x^3-8x^2)+(-5x^3+6x)$$

**Ex:** 
$$(2s^3 + 8) - (-3s^3 + 7s - 5)$$

## 9.2 – 9.3: Multiply Polynomials/Special Products Formulas:

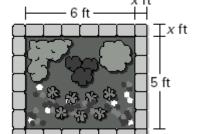
- Be able to distribute, FOIL and multiply polynomials

Ex: 
$$(-3d+10)(2d-1)$$

**Ex:** 
$$(2s+5)(s^2+3s-1)$$

Ex: 
$$(m+7)(m-3)-(m-4)(m+5)$$

- Be able to apply special products formulas


Ex: 
$$(3m-7n)^2$$

**Ex:** 
$$(3x + 8y)^2$$

Ex: 
$$(2a-5b)(2a+5b)$$

Ex: You are designing a rectangular flower bed that you will border using brick pavers. The width of the border around the bed will be the same on every side, as shown.

a. Write a polynomial that represents the total area of the flower bed and the border.



**b.** Find the total area of the flower bed and border when the width of the border is 1.5 feet.

## 9.4: Factor Using the GCF:

- Be bale to identify the GCF of a quadratic expression and factor using this method.

**Ex:** 
$$2x^2 - 4x$$

**Ex:** 
$$-4y + 16y^2$$
 **Ex:**  $3xy + 8xy^2$ 

**Ex:** 
$$3xy + 8xy^2$$

- Be able to solve a quadratic equation in factored form.

Ex: 
$$(3x-1)(x+2) = 0$$

**Ex:** 
$$x(2x-5)=0$$

Ex: 
$$x(3x-7)(4x-1)=0$$

- Be able to solve a quadratic equation by factoring using the GCF first!

**Ex:** 
$$7x^2 + 21x = 0$$

**Ex:** 
$$8x^2 - 16x = 0$$
 **Ex:**  $2x^2 = -7x$ 

**Ex:** 
$$2x^2 = -7x$$

- Be able to use the vertical motion model to solve problems involving a problem's height and time.  $(h = -16t^2 + vt + s)$ 

Ex: An object is launched from the ground with an initial vertical velocity of 32 feet per second. How long before the object reaches the ground?

## 9.5: Factor Quadratics in the Form $y = x^2 + bx + c$ :

- Be able to factor trinomials in the form  $x^2 + bx + c$  by factoring into two binomials in the form: (x+p)(x+q)

Ex: 
$$x^2 - 7x + 12$$

**Ex.** 
$$x^2 - 2x - 24$$

Ex: 
$$-x^2 - 9x - 18$$

- Be able to solve quadratic equations by factoring first.

Ex: 
$$x^2 - 7x + 12 = 0$$

**Ex:** 
$$x^2 - 17x + 60 = 0$$
 **Ex:**  $x^2 + 8x = -12$ 

**Ex:** 
$$x^2 + 8x = -12$$

- Be able to use the vertical motion model to solve problems involving a problem's height and time.  $(h = -16t^2 + vt + s)$ 

Ex: An object is launched from a height of 48 feet with an initial vertical velocity of 32 feet per second. How long before the object reaches the ground?

## 9.6: Factor Quadratics in the Form $y = ax^2 + bx + c$ :

- Be able to factor quadratics in the form  $y = ax^2 + bx + c$  into two binomials either using the  $ax^2 + mx + nx + c$  method or number combinations method.

**Ex:** 
$$3x^2 + x - 2$$

Ex: 
$$3x^2 + x - 2$$
 Ex:  $5x^2 - 6x + 1$ 

**Ex:** 
$$3x^2 + 13x + 4$$

- Be able to solve quadratics in the form  $y = ax^2 + bx + c$  by factoring first.

$$\mathbf{Ex:} \, 3x^2 + x - 2 = 0$$

**Ex:** 
$$3x^2 + x - 2 = 0$$
 **Ex:**  $2x^2 - 3x - 35 = 0$ 

**Ex:** 
$$4x^2 + 11x = 3$$

## 9.7: Factor Special Products:

- Be able to factor difference of two squares

Ex: 
$$x^2 - 25$$

**Ex:** 
$$4x^2 - 169$$

**Ex:** 
$$2x^2 - 50$$

- Be able to factor perfect square trinomials

**Ex:** 
$$4x^2 + 20x + 25$$

**Ex:** 
$$3x^2 - 8x + 48$$

#### 9.8: Factor Polynomials Completely:

- Be able to factor out a common binomial

**Ex:** 
$$x(x-8) + (x-8)$$

Ex: 
$$x(x-8) + (x-8)$$
 Ex:  $5y(y+3) - 2(y+3)$  Ex:  $6z(z-4) + 5(4-z)$ 

Ex: 
$$6z(z-4) + 5(4-z)$$

- Be able to factor by grouping

Ex: 
$$5n^3 - 4n^2 + 25n - 20$$

**Ex:** 
$$y^2 + 5x + 5xy + y$$

- Be able to factor polynomials completely

Ex: 
$$7a^3b^3 - 63ab^3$$

**Ex:** 
$$-4s^3t^3 + 24s^2t^2 - 36st$$

**Ex:** 
$$6g^3 - 24g^2 + 24g$$

Ex: 
$$3n^5 - 48n^3$$